11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие бывают датчики давления

Датчики давления

Принцип работы датчиков давления

Единицы измерения давления

  • Паскаль
    1 Па = 1 Н/м 2
  • Бар
    1 бар = 10 5 Па
  • Физическая Атмосфера – атмосферное давление на уровне моря 1 атм = 101325 Па = 1,01325 бар = 10,33 м вод. ст.
  • Метр водяного столба – гидростатическое давление столба воды высотой в 1 метр 1 м вод. ст. = 9806,65 Па = 9,80665×10 -2 бар = 0,096784 атм (напор в водопроводе удобно измерять в метрах водяного столба).

Классификация датчиков по типу измеряемого давления

  • Датчики абсолютного давления
    (Absolute Pressure Sensor)
    Эти датчики измеряют давление относительно абсолютного вакуума.
    Применение: пищевые и химические производства.
  • Датчики избыточного (относительного) давления, манометры
    (Gauge Pressure Sensor)
    Эти датчики измеряют давление относительно атмосферного давления в этом месте.
    Барометры измеряют атмосферное давление.
    Применение: водоснабжение и водоотведение.
  • Датчики дифференциального (перепада) давления
    (Differential Pressure Sensor)
    Эти датчики измеряют перепад (разность) давления в двух точках.
    Применение: контроль загрязнения фильтров, измерение расхода и уровня жидкости (гидростатический метод).
  • Вакуумные датчики, датчики разряжения
    (Vacuum Pressure Sensor)
    Измеряют давление, которое ниже атмосферного (вакуум).

Классификация датчиков давления по принципу действия

  • Пьезорезистивные (Piezoresistive Strain Gage)
    Используется эффект изменения электрического сопротивления полупроводников под действием механической нагрузки.
  • Пьезоэлектрические (Piezoelectric)
    Используется пьезоэлектрический эффект – способность некоторых кристаллов (кварца) и керамики генерировать электрическое поле или разность потенциалов пропорционально силе давления (сжатия).
  • Тензометрические (Strain Gauge)
    Используется тензоэффект – изменение электрического сопротивления тензорезисторов при их деформации под воздействием нагрузки.
  • Емкостные (Capacitive)
    Используется эффект зависимости ёмкости конденсатора от расстояния между обкладками.
  • Резонансные (Resonant)
    Используется эффект зависимости частоты собственных колебаний (кварцевого резонатора) от давления.
  • Индуктивные (Electromagnetic)
    Принцип действия основан на регистрации токов Фуко, возникающих в металлическом экране, расположенном между двумя катушками, одна из которых связана с измерительной мембраной – при её приближении или удалении от экрана изменяется индуктивность системы.
  • Ионизационные (Ionization)
    Используется эффект зависимости плотности потока ионов от разряжения в катодно-анодной лампе.

Вентильные блоки

Позволяют отключать датчик от процесса, проводить профилактические работы, промывку и калибровку.

Разделители давления

Разделители давления служат для разнесения в пространстве преобразователя и среды измерения. Измеряемое давление передается с разделительной мембраны на наполнительную жидкость и дальше по капиллярной трубке или напрямую в измерительную камеру преобразователя.

  • При использовании в пищевой и фармацевтической промышленности быстросъёмные мембранные разделители можно легко промывать
  • Измеряемое вещество может закупорить или разъесть импульсные трубки
  • Нестандартный температурный диапазон.

Как выбрать датчик давления

Измеряемое давление

  • Абсолютное
  • Избыточное (относительное)
  • Дифференциальное (перепад)
  • Вакуум (разрежение)
  • Гидростатическое давление (уровень).

Измеряемая среда

  • Измеряемая среда
  • Диапазон рабочих температур измеряемой среды
  • Максимальное статическое давление измеряемой среды.

Окружающая среда

  • Температура окружающей среды
  • Влажность
  • Наличие агрессивных сред
  • Взрывоопасная зона.

Метрологические характеристики

  • Единицы измерения (градуировка)
  • Погрешность измерений
  • Перестраиваемый интервал измерений
  • Влияние температуры окружающей среды
  • Влияние статического давления
  • Влияние питания
  • Влияние вибрации
  • Долговременный дрейф
  • Межповерочный период
  • Электромагнитная совместимость.

Подключение к процессу

  • Штуцерное
  • Фланцевое
  • Ниппель
  • Гигиеническая конструкция
  • Разделитель давления
    • наполнитель.

Вентильный блок

  • 2-х ходовой
  • 3-х ходовой
  • 5-ти ходовой.

Преобразователь

  • Индикатор
  • Диагностические функции
  • Степень защиты корпуса
  • Материал корпуса
  • Питание
  • Кабельный ввод
  • Выходной сигнал:
    • токовый 4..20мА
    • HART
    • PROFIBUS PA
    • Foundation Fieldbus.

Датчики измерения давления

Из чего состоят датчики давления? Классификация по принципу действия, принцип работы каждого типа датчиков, преимущества и недостатки каждого. Также вы узнаете, на что нужно обращать внимание при выборе датчиков давления. Производители и дилеры датчиков давления.
Вы также можете посмотреть другие статьи. Например, «Датчики температуры» или «Абсолютная влажность воздуха».

Датчик давления — это устройство, в котором выходные параметры зависят от давления исследуемой среды, будь то жидкость, газ или пар. Современные системы не могут обойтись без точных приборов этого типа, они используются в системах автоматизации различных отраслей: энергетика, пищевая промышленность, нефтяная и газовая отрасль и многие-многие другие. У нас в каталоге, есть раздел датчики давления с помощью которого, вы сможете выбрать и купить нужный вам датчик.

В состав любого датчика давления входит:

  • первичный преобразователь давления с чувствительным элементом;
  • различные по конструкции корпусные детали;
  • схемы для повторной обработки сигнала.

Классификация датчиков давления по принципу действия

Оптические

Оптические датчики давления могут быть построены на двух принципах измерения: волоконно-оптическом и оптоэлектронном.

Волоконно-оптические

Волоконно-оптические датчики давления являются наиболее точными и их работа не сильно зависит от колебания температуры. Чувствительным элементом является оптический волновод. Об измеряемой величине давления в таких приборах обычно судят по изменению амплитуды и поляризации проходящего через чувствительный элемент света. Более подробно об волоконно-оптических датчиках давления можно почитать в этом PDF документе.

Оптоэлектронные

Датчики этого типа состоят из многослойных прозрачных структур. Через эту структуру пропускают свет. Один из прозрачных слоев может изменять свои параметры в зависимости от давления среды. Есть 2 параметра, которые могут изменяться: первый это показатель преломления, второй это толщина слоя. На иллюстрации показаны оба метода, изменение показателя преломления — рисунок а, изменение толщины слоя — рисунок б.

Понятно, что при изменении этих параметров будут меняться характеристики проходящего через слои света, это изменение будет регистрироваться фотоэлементом. Более подробно об оптоэлектронных датчиках давления можно почитать в этом PDF документе. К достоинствам датчика этого типа можно отнести очень высокую точность.

Магнитные

Другое название таких датчиков — индуктивные. Чувствительная часть таких датчиков состоит их Е-образной пластины, в центре которой находится катушка, и проводящей мембраны чувствительной к давлению. Мембрана располагается на небольшом расстоянии от края пластины. При подключении катушки, создается магнитный поток, который проходит через пластину, воздушный зазор и мембрану. Магнитная проницаемость зазора примерно в тысячу раз меньше магнитной проницаемости пластины и мембраны. Поэтому, даже небольшое изменение величины зазора влечет за собой заметное изменение индуктивности.

Емкостные

Имеет одну из наиболее простых конструкций. Состоит из двух плоских электродов и зазора между ними. Один из этих электродов представляет собой мембрану на которую давит измеряемое давление, вследствие, чего изменяется величина зазора. То есть, по сути, этот тип датчиков представляет собой конденсатор с изменяющейся величиной зазора. А как известно емкость конденсатора зависит от величины зазора. Емкостные датчики способны фиксировать очень маленькие изменения давления.

Ртутные

Тоже очень простой измерительный прибор. Работает по принципу сообщающихся сосудов. На один из этих сосудов давить измеряемое давление. Давление определяется по величине ртутного столба.

Пьезоэлектрические

Чувствительным элементом датчиков этого типа является пьезоэлемент — материал, выделяющий эклектический сигнал при деформации (прямой пьезоэффект). Пьезоэлемент находится в измеряемой среде, он будет выделять ток пропорциональный величине изменения давления. Так как электрический сигнал в пьезоматериале выделяется только при деформировании, а при постоянном давлении деформирование не происходит, то этот датчик пригоден только для измерения быстро меняющегося давления.

Пьезорезонансные

Этот тип тоже использует пьезоэффект, только в отличие от прошлого типа тут используется обратный пьезоэффект — изменение формы пьезоматериала в зависимости от подаваемого тока. В датчиках данного типа используется резонатор (например пластина) из пьезоматериала, на которую нанесены с двух сторон электроды. На электроды по переменно подается напряжение разного знака, таким образом пластина изгибается то в одну то в другую сторону с частотой подаваемого напряжения. Но если на эту пластину подать силу, например мембраной чувствительной к давлению, то частота колебания резонатора изменится. Частота резонатора и будет показывать величину, с которой давление давит на мембрану, а она в свою очередь давит на резонатор.

В качестве примера, на рисунке приведен пьезорезонансный датчика абсолютного давления. Он выполнен в виде герметичной камеры 1. Герметичность достигается соединением корпуса 2, основания 6 и мембраны 10, которая крепится к корпусу с помощью электронно-лучевой сварки. На основании 6 закреплены два держателя: 4 и 9. Держатель 4 крепится к основанию с помощью специально перемычки 3 и он держит силочувствительный резонатор 5. Держатель 9, установлен для крепления опорного пьезорезонатора 8.

Мембрана 10 передает усилие через втулку 13 на шарик 6, закрепленный в держателе 4. Шарик 4 передает силу давления на силочувствительный резонатор 5.

Провода 7 крепятся на основании 6 и служат для соединения резонаторов 5 и 8 с генераторами 17 и 16 Выходной сигнал абсолютного давления формируется схемой 15 из разности частот генераторов. Датчик давления помещен в активный термостат 18 с постоянной температурой 40 градусов Цельсия. Измеряемое давление подается через штуцер 12.

Резистивные

По-другому этот тип датчиков называет тензорезистивный. Тензорезистор — это элемент, изменяющий свое сопротивление в зависимости от деформирования. Эти тензоризисторы устанавливают на мембрану чувствительную к изменению давления. В итоге, при давлении на мембрану она изгибается и изгибает тензоризисторы, закрепленные на ней. Вследствие чего, сопротивление на них меняется и меняется величина тока в цепи.

На какие параметры нужно обращать внимание при покупке датчиков давления

  1. Вид давления. Очень важно понимать какой вид давления необходимо измерять. Существует 5 типов: абсолютное, дифференциальное(относительное), вакуум, избыточное, барометрическое. Для лучшего понимания разницы между ними, рекомендуем прочитать статью «виды давления».
  2. Диапазон измеряемого давления.
  3. Степенью защиты прибора. В разных отраслях использования датчиков будут разные условия эксплуатации, для которых необходимы разные степени защиты от проникновения воды и пыли. Определитесь, какую степень защиты электроприбора нужно выбрать именно вам.
  4. Наличие термокомпенсации. Температурные эффекты, такие как расширение материалов, могут наложить достаточно сильные помехи на выходные показания датчика. Если у вас происходят постоянное изменение температуры измеряемой среды, то термокомпенсация необходима. Обратите также внимание на границы температур. Например, у датчика ST250PG2BPCF есть термокомпенсация в пределах от -40 до 100 градусов Цельсия.
  5. Материал. Материал может оказать решающую роль при использовании датчика в агрессивных средах, в таком случае необходим выбор материала с высокой коррозийной стойкостью.
  6. Вид выходного сигнала. Важно определиться какой вид нужен вам. Аналоговый или цифровой? Если аналоговый, то какие диапазоны выходных сигналов и сколько проводов? Например, диапазоны могут быть 4. 20 мА.
Читать еще:  Стучит шток амортизатора в стакане

Производители и дилеры

В нашем каталоге представлены датчики давления, которые можно приобрести у следующих производителей и дилеров: Honeywell International, Компэл, Freescale Semiconductor, Inc, Omron Electronics LLC, ST Microelectronics, BD Sensors RUS.

Если вам понравилась статья нажмите на одну из кнопок ниже

Электрические датчики давления

Сегодня для цели измерения давления в разных областях промышленности используют отнюдь не только ртутные барометры и анероиды, но и различные датчики, отличающиеся как принципом действия, так и достоинствами и недостатками, свойственными каждому типу таких датчиков. Современная электроника позволяет реализовывать датчики давления непосредственно на электрической, электронной базе.

Так что же мы понимаем под словосочетанием «электрический датчик давления»? Какие бывают электрические датчики давления? Как они устроены, и какими обладают особенностями? И наконец, какой датчик давления выбрать, чтобы он максимально подошел для той или иной цели? В этом и разберемся по ходу данной статьи.

Прежде всего определимся с самим термином. Датчиком давления называется устройство, выходные параметры которого зависят от измеряемого давления. В качестве исследуемой среды может выступать пар, жидкость или какой-нибудь газ, в зависимости от сферы применения конкретного датчика.

Современным системам необходимы точные приборы данного типа, как важные составные части систем автоматизации энергетической, нефтяной, газовой, пищевой и многих других промышленностей. Жизненно необходимы миниатюрные датчики давления в медицине.

Любой электрический датчик давления включает в себя: чувствительный элемент, служащий для передачи воздействия на первичный преобразователь, схему обработки сигнала и корпус. Принципиально электрические датчики давления подразделяются на:

Резистивный или тензорезистивный датчик давления — это устройство, чувствительный элемент которого изменяет свое электрическое сопротивление под действием деформирующей нагрузки. Тензорезисторы устанавливаются на чувствительную мембрану, которая под давлением изгибается, и изгибает прикрепленные к ней тензорезисторы. Сопротивление тензорезисторов меняется, и соответственно меняется величина тока цепи первичного преобразователя.

Растяжение проводящих элементов каждого тензорезистора приводит к росту длины и уменьшению поперечного сечения, в результате сопротивление растет. При сжатии — наоборот. Относительные изменения сопротивления измеряются тысячными долями, поэтому в схемах обработки сигнала используются прецизионные усилители с АЦП. Так деформация преобразуется в изменение электрического сопротивления полупроводника или проводника, и далее — в сигнал напряжения.

Тензорезисторы обычно представляют собой зигзагообразный проводящий или полупроводящий элемент, нанесенный на гибкую подложку, которая приклеивается к мембране. Подложка как правило — из слюды, бумаги или полимерной пленки, а проводящий элемент — из фольги, тонкой проволоки или полупроводника, напыленного в вакууме на металл. Соединение чувствительного элемента тензорезистора с измерительной цепью осуществляется при помощи контактных площадок или проволочных выводов. Сами тензорезисторы имеют обычно площадь от 2 до 10 кв.мм.

Тензорезистивые датчики отлично подойдут для оценки уровня давления, силы нажатия и измерения веса.

Следующий тип электрического датчика давления — пьезоэлектрический . В качестве чувствительного элемента здесь выступает пьезоэлемент. Пьезоэлемент на основе пьезоэлектрика генерирует электрический сигнал при деформации, это так называемый прямой пьезоэффект. Пьезоэлемент помещается в измеряемую среду, и тогда ток в цепи преобразователя будет по величине пропорционален изменению давления в этой среде.

Поскольку для возникновения пьезоэффекта требуется именно изменение давления, а не постоянное давление, то данный тип датчиков давления годится лишь для измерения давления в динамике. Если же давление будет постоянным, то процесса деформации пьезоэлемента не произойдет, и ток не будет пьезоэлектриком сгенерирован.

Применяются пьезоэлектрические датчики давления, например, в первичных преобразователях скорости потока вихревых счетчиков воды, пара, газа и других однородных сред. Такие датчики монтируют попарно в трубопровод с условным проходом от десятков до сотен миллиметров за телом обтекания и так регистрируют вихри, частота и количество которых оказываются пропорциональны объемному расходу и скорости потока.

Далее рассмотрим пьезорезонансные датчики давления . В пьезорезонансных датчиках давления работает обратный пьезоэффект, при котором пьезоэлектрик деформируется под действием подаваемого напряжения, и чем больше напряжение, тем сильнее деформация. В основе датчика — резонатор в форме пластины из пьезоэлектрика, с двух сторон которой нанесены электроды.

При подаче на электроды переменного напряжения, материал пластины вибрирует, изгибаясь то в одну, то в другую сторону, и частота вибрации равна частоте подаваемого напряжения. Однако если теперь пластину деформировать, подействовав на нее внешней силой, например посредством чувствительной к давлению мембраны, то частота свободных колебаний резонатора изменится.

Так, собственная частота резонатора отразит величину давления на мембрану, которая давит на резонатор, приводя к изменению частоты. В качестве примера можно рассмотреть датчик абсолютного давления на базе пьезорезонанса.

В камеру 1 через штуцер 12 передается измеряемое давление. Камера 1 отделена мембраной от чувствительной измерительной части прибора. Корпус 2, основание 6 и мембрана 10 соединены герметично между собой, образуя вторую герметичную камеру. Во второй герметичной камере на основании 6 закреплены держатели 9 и 4, второй из которых прикреплен к основанию 6 при помощи перемычки 3. Держатель 4 служит для фиксации чувствительного резонатора 5. Опорный резонатор 8 зафиксирован держателем 9.

Под действием измеряемого давления, мембрана 10 давит через втулку 13 на шарик 14, который также закреплен в держателе 4. Шарик 14 давит в свою очередь на чувствительный резонатор 5. Провода 7, закрепленные в основании 6, соединяют резонаторы 8 и 5 с генераторами 16 и 17 соответственно. Для формирования сигнала, пропорционального величине абсолютного давления служит схема 15, которая из разности частот резонаторов формирует выходной сигнал. Сам датчик размещен в активном термостате 18, в котором поддерживается постоянная температура 40 °C.

Одними из наиболее простых являются емкостные датчики давления . Два плоских электрода и зазор между ними образуют конденсатор. Один из электродов — мембрана, на которую действует измеряемое давление, что и приводит к изменению толщины зазора между, по сути, обкладками конденсатора. Общеизвестно, что емкость плоского конденсатора изменяется с изменением величины зазора при постоянной площади обкладок, поэтому для фиксации даже очень малых изменений давления емкостные датчики оказываются весьма и весьма эффективными.

Малогабаритные емкостные датчики давления позволяют измерять избыточное давление в жидкостях, газах, в паре. В различных технологических процессах с применением гидравлических и пневматических систем, в компрессорах, в насосах, на станках — во множестве промышленных задач оказываются полезными емкостные датчики давления. Конструкция датчика устойчива к перепадам температур и вибрациям, невосприимчива к электромагнитным помехам и агрессивным условиям среды.

Еще один тип электрических датчиков давления, отдаленно похожих на емкостные — индуктивные или магнитные датчики . Проводящая мембрана, чувствительная к давлению, расположена на некотором расстоянии от тонкого Ш — образного магнитопровода, на среднем керне которого намотана катушка. Между мембраной и магнитопроводом выставлен определенный воздушный зазор.

Когда на катушку подается напряжение, ток в ней создает магнитный поток, который проходит как через сам магнитопровод, так и через воздушный зазор и через мембрану, замыкаясь. Поскольку магнитная проницаемость в зазоре приблизительно в 1000 раз меньше, чем в магнитопроводе и в мембране, то даже небольшое изменение толщины зазора приводит к ощутимому изменению индуктивности цепи.

Под действием измеряемого давления чувствительная мембрана претерпевает изгиб, и комплексное сопротивление обмотки изменяется. Преобразователь конвертирует это изменение в электрический сигнал. Измерительная часть преобразователя выполнена по мостовой схеме, где в одно из плеч включена обмотка датчика. Посредством АЦП сигнал с измерительной части переводится в пропорциональный измеряемому давлению электрический сигнал.

Последний тип датчиков давления, который мы рассмотрим, – оптоэлектронные датчики . Они довольно просто детектируют давление, имеют высокую разрешающую способность, обладают высокой чувствительностью, и термостабильны. Работающие на основе интерференции света, использующие для измерения малых перемещений интерферометр Фабри-Перо, эти датчики особо перспективны. Кристалл оптического преобразователя с диафрагмой, светодиод, и детектор, состоящий из трех фотодиодов — вот основные части такого датчика.

К двум фотодиодам пристроены оптические фильтры Фаби-Перо, имеющие небольшую разницу в толщине. Эти фильтры представляют собой кремниевые зеркала с отражением от передней поверхности, покрытые слоем оксида кремния, на поверхность которой нанесен тонкий слой алюминия.

Оптический преобразователь похож на емкостной датчик давления, диафрагма, сформированная методом травления в подложке из монокристаллического кремния, покрыта тонким слоем металла. На нижнюю сторону стеклянной пластины также нанесено металлическое покрытие. Между стеклянной пластиной и кремниевой подложкой существует зазор шириной w, получаемый при помощи двух прокладок.

Два слоя металла формируют интерферометр Фабии-Перо с переменным воздушным зазором w, в состав которого входят: подвижное зеркало, расположенное на мембране, меняющее свое положение при изменении давления, и параллельное ему стационарное полупрозрачное зеркало на стеклянной пластине.

Примерно на этой основе фирма FISO Technologies производит микроскопические чувствительные датчики давления, диаметром всего 0,55 мм, легко проходящие сквозь игольное ушко. При помощи катетера мини-датчик вводится в исследуемый объем, внутри которого и измеряется давление.

Читать еще:  Что будет если отключить кислородный датчик

Оптическое волокно связано с интеллектуальным сенсором, в котором под управлением микропроцессора включается источник монохроматического света, вводимого в волокно, измеряется интенсивность обратно отраженного светового потока, по калибровочным данным вычисляется внешнее давление на датчик и выводится на дисплей. В медицине, например, такие сенсоры применяют для контроля внутричерепного давления, для измерений давления крови в легочных артериях, куда иным способом невозможно добраться.

Датчики давления. Типы, характеристики, особенности, подбор.

Введение

Давление необходимо учитывать при проектировании многих химических процессов. Давление определяется как сила действующая на единицу площади и измеряется в английских единицах – пси или в СИ единицах – Па.
Существуют три типа измеряемого давления:

  1. Абсолютное давление – атмосферное давление плюс избыточное давление;
  2. Избыточное давление – абсолютное давление минус атмосферное давление;
  3. Дифференциальное давление – разность давлений между двумя точками.

Существуют различные типы датчиков давления, которые сегодня доступны на рынке для использования в промышленности. Каждый из них имеет преимущества в определенных ситуациях.

Критерии отбора датчика

Для того чтобы контролируемая давлением система работала правильно и эффективно, важно, чтобы используемый датчик давления мог давать точные показания по мере необходимости и в течение длительного периода времени без необходимости ремонта или замены в условиях работы системы. Существует несколько факторов, влияющих на пригодность конкретного датчика давления для конкретного процесса. Основные это:

  • характеристики используемых веществ в среде которых будет использоваться устройство;
  • условия окружающей среды;
  • диапазон давлений;
  • уровень точности и чувствительности, требуемые в процессе измерения.

Процесс

Чувствительный элемент (упругий элемент) будет подвергаться воздействию веществ, используемых в процессе, поэтому материалы датчика, которые могут реагировать с данными веществами или подвергаться воздействию агрессивных сред – непригодны для использования. Мембраны (диафрагмы) являются оптимальными даже для очень суровых условий использования.

Окружающая среда

Окружающая среда (в технологическом процессе – это среда создаваемая веществом, вибрация, температура и т.д.), в которой проводится технологический процесс, также должна быть учтена при выборе датчика давления. В агрессивных средах, при сильных вибрациях в трубопроводе, или при экстремальных температурах, датчики должны иметь дополнительный уровень защиты. Герметичные, прочные корпуса с заполнением материалом, содержащим глицерин или силикон – часто используются, для того, чтобы защитить внутренние компоненты датчика (кроме чувствительного элемента) от очень жестких, агрессивных сред и колебаний.

Диапазон давлений

Большинство процессов работают в определенном диапазоне давлений. Поскольку определенные датчики давления работают оптимально в определенных диапазонах давления, существует необходимость выбрать устройства, способные функционировать в диапазоне, установленном процессом.

Чувствительность

Различные процессы требуют различных уровней точности. В общем, чем точнее датчик, тем он дороже, таким образом, будет экономически выгодно выбрать датчики, которые способны максимально удовлетворить требуемую точность. Существует также компромисс между точностью и способностью быстро обнаруживать изменения давления. Следовательно, в процессах, в которых давление сильно варьируется в течение коротких периодов времени – нецелесообразно использовать датчики, которым требуется больше времени, чтобы дать точные показания давления, хотя они и могли бы дать более точные значения.

Методы измерения давления

Существует несколько наиболее часто используемых методов измерения давления. Эти методы включают в себя визуальный замер высоты жидкости в колонне, метод упругой деформации и электрические методы.

Высота жидкости в колонне

Давление можно выразить как высоту жидкости с известной плотностью в трубке. Используя уравнение P = ρ GH, можно легко вычислить значение давления. Данные типы измерительных приборов обычно называют манометрами. Для измерения высоты жидкости в колонне, может быть использована шкала с единицами измерения расстояния, также как и откалиброванная шкала давления. Обычно в качестве жидкости в этих колоннах используется вода или ртуть. Вода используется, когда вы хотите достичь более высокой чувствительности (плотность воды значительно меньше, чем плотность жидкой ртути, так что высота столба воды будет более сильно меняться при изменении давления). Ртуть же используется, когда вы хотите измерять более высокие значения давления, но с меньшей чувствительностью.

Упругая деформация

Этот метод измерения давления основан на принципе, который гласит, что степень деформации упругого материала прямо пропорциональна прикладываемому давлению. Для данного метода, в основном, используются три типа датчиков: трубки Бурдона, диафрагмы и сильфоны. (См. раздел “Типы датчиков”)

Электрические методы

Электрические методы, используемые для измерения давления основаны на принципе, основывающимся на том, что изменение размера влияет на электрическое сопротивление проводника. Устройства, использующие для измерения давления изменение сопротивления называют тензодатчиками. Также существуют и другие электрические датчики, например емкостные, индуктивные, магнетосопротивления (Холла), потенциометрические, пьезометрические и пьезорезистивные преобразователи. (См. раздел “Типы датчиков”)

Типы датчиков

Существует множество различных датчиков давления являющихся наиболее подходящими для конкретного процесса, но их обычно можно разделить на несколько категорий, а именно: упругие датчики, электрические преобразователи, датчики дифференциального давления и датчики давления вакуума. Ниже представлены категории, каждая из которых содержит уникальные внутренние компоненты более подходящие под использование в конкретной ситуации.

Упругие датчики

Большинство датчиков давления жидкости имеют упругую структуру, где жидкость заключена в небольшой отсек по меньшей мере с одной упругой стенкой. При использовании данного метода, показания давления определяются путем измерения отклонения этой эластичной стенки, представляя результат непосредственным отсчетом через соответствующие связи, либо через трансдуцированные электрические сигналы. Упругие датчики давления очень чувствительны, они довольно хрупкие и подвержены вибрации. Кроме того, они, как правило, значительно дороже, чем манометры, и поэтому в основном используются для передачи измеренных данных и измерения разности давлений. Теоретически можно использовать довольно широкий спектр упругих элементов для упругих датчиков давления. Однако большинство устройств используют ту или иную форму трубки Бурдона или диафрагмы.

Трубки Бурдона

Принцип, на котором основаны разного вида трубки Бурдона: Давление, подаваемое внутрь трубки, вызывает упругую деформацию эллиптического или овального сечения трубки в сторону круга, которая вызывает появление напряжений в продольном направлении, заставляющих трубку разгибаться, а свободный конец трубки перемещаться. Система рычагов и передач превращает это движение и возвращает стрелку, показывающую давление относительно круглой шкалы. Диапазон измерения такого манометра составляет – от 10 Па до 1000 МПа. Трубные материалы могут быть изменены соответствующим образом в соответствии с требуемым условием процесса. Также, трубки Бурдона – портативные и требуют минимального технического обслуживания, однако, они могут быть использованы только для статических измерений и имеют низкую точность.

Материалом для трубчатых пружин может служить сталь, бронза, латунь. В зависимости от конструктивного исполнения трубчатые пружины могут быть одно- и многовитковые (винтовые и спиральные), S-образные и т.п. Распространены одновитковые трубчатые пружины, используемые в манометрах, которые предназначены для измерения давления жидкостей и газов, а также в таких типах манометров как глубиномер. Датчики С-типа могут быть использованы в диапазонах давлений приближающихся к 700 МПа; они имеют минимальный рекомендованный диапазон давления – 30 кПа (т.е. они не достаточно чувствительны для измерения разности давлений меньше чем 30 кПа).

Сильфоны

Сильфоны имеют цилиндрическую форму и содержат много складок. Они могут деформироваться в осевом направлении при изменении давления (сжатие или расширение). Давление, которое должно быть измерено прикладывается к одной стороне сильфона (внутри или снаружи), тогда как на противоположную сторону действует атмосферное давление. Абсолютное давление может быть измерено путем откачки воздуха из внешнего или внутреннего пространства сильфона, а затем измерением давления на противоположной стороне. Сильфон может быть подключен только к включающим / выключающим переключателям или к потенциометру и используется при низких давлениях, H 2 (газ) + ZnCl 2 (жидк), вы производите один моль газообразного водорода в дополнение к существующему давлению воздуха в емкости. По мере протекания реакции, давление внутри сосуда будет существенно увеличиваться. Моделирование давления H 2 (газ) в идеальных условиях равно, Р = НЗТ / V

  • Примерно через 1 час, давление H 2 (газ) увеличится до 4,38 атм, создав общее давление в сосуде на 5,38 атм.
  • Окружающая среда
    1. Здесь нет опасности от высоких температур и сильной вибрации из-за высокого расхода и скорости реакции.
  • Чувствительность
    1. Так как это умеренно опасный процесс, мы должны иметь выход датчика подключаемый к компьютеру. Так, инженер может безопасно наблюдать за процессом. Мы предполагаем, что датчик будет сигнализировать клапан HCl, чтобы закрыть его после того, как рабочее давление станет равным 3 атм., однако устройства иногда дают ошибку. Мы также должны иметь высокую чувствительность, поэтому предпочтительными будут электрические компоненты (т.е. мы не хотим, чтобы процесс отклонялся от нормального режима, хотя это потенциально возможно, если бы датчик был не очень чувствителен к постепенным изменениям).
  • Точка отключения

    Принимая во внимание быстрое увеличение давления, как оценено в пункте (2), и отказ клапана при 4 атм., точка выключения должно быть примерно равна 3 атм.

    Тип датчика:

    1. Учитывая типы датчиков, которые мы обсуждали, мы можем сразу отбросить вакуумные датчики, так как они работают при очень низких давлениях (почти вакууме, отсюда и название). Мы можем также отбросить дифференциальные датчики давления, поскольку мы не ищем перепада давления на резервуаре.
    2. Поскольку мы хотим добиться высокой чувствительности, мы должны использовать электрические компоненты. Учитывая диапазон давлений (3 атм.; макс
    Читать еще:  Как смазать выжимной подшипник на газели

    0,3 МПа) оптимальным будет емкостной элемент, потому что он прочный и хорошо работает в системе низкого давления.

  • Принимая во внимание коррозионную активность в системе с содержанием HCl , в качестве упругого элемента может быть использована мембрана. Мембраны также довольно прочны и обеспечивают быстрое время отклика.
  • Эта комбинация, вероятно, будет заключена в прочном, заполненном, глицерином / силиконом корпусе, чтобы защитить датчик от деградации.
  • Так, в итоге, мы выбираем датчик, который будет использовать диафрагму в качестве упругого элемента, емкостной элемент качестве электрического компонента и антикоррозийный корпус.

    Пример 2

    Ваш руководитель сказал вам добавить датчик давления в очень дорогой и важной части оборудования. Вы знаете, что часть оборудования работает на 1 МПа и при очень высокой температуре. Какой датчик вы бы выбрали?

    Решение

    Поскольку часть оборудования, которое вы имеете дело очень дорогое, вам нужен датчик, который имеет высокую чувствительность. Электрический датчик был бы подходящим, потому что вы могли бы подключить его к компьютеру для быстрого и простого считывания показаний. Кроме того, вы должны выбрать датчик, который будет работать на 1 МПа и сможет выдерживать высокие температуры. Из информации представленной в этой статье вы знаете, что есть много датчиков, которые будут работать при давлении 1 МПа, так что вы должны решить, относительно других влияющих факторов. Одним из наиболее чувствительных электрических датчиков является датчик емкостного типа. Он имеет чувствительность 0.07 МПа. Емкостный датчик обычно имеет диафрагму в качестве упругого элемента. Мембраны имеют быстрое время отклика, очень точны и работают на 1 МПа.

    Датчики давления. Виды и работа. Как выбрать и применение

    Датчики давления являются устройством, выдающим сигналы на выходе, зависящие от давления измеряемой среды. Сегодня не обходятся без точных датчиков определения давления. Они применяются в автоматизированных системах всех отраслей промышленности.

    Многие датчики давления функционируют на преобразовании давления в движение механической части. Кроме механических элементов (трубчатые пружины, мембраны) для замеров используются тепловые и электрические системы. Электронные элементы дают возможность осуществить производство датчиков давления на электронных элементах.

    Датчик давления состоит из:
    • Первоначальный преобразователь вместе с чувствительным элементом.
    • Корпус датчика, имеющий разные конструкции.
    • Электрическая схема.

    Классификация и принцип работы

    Волоконно-оптические

    Этот тип датчиков считается самым точным в работе, которая не имеет большой зависимости от изменений температуры. Элементом точной чувствительности действует оптический волновод. Давление в волоконно-оптических приборах определяется путем поляризации света, прошедшего по элементу чувствительности, и колебаниям амплитуды.

    Оптоэлектронные датчики давления

    Датчики давления состоит из нескольких слоев, через которые проходит свет. Один слой меняет свойства от величины давления среды. Меняются 2 параметра: величина преломления и размер слоя. Методы изображены на рисунках.

    При изменении свойств будет изменяться характеристика света, проходящего через слои. Фотоэлемент производит регистрацию изменений. Преимуществом оптоэлектронных приборов стала высокая точность.

    Датчики легко определяют давление, имеют повышенное разрешение, чувствительность, стабильны к действию температуры. Перспективность оптоэлектронных приборов обуславливается работой на интерференции света, использованием интерферометра для замера малых перемещений. Основные составляющие элементы датчика – кристалл оптического анализатора с диафрагмой, фотодиод и детектор. Детектор составляют три светодиода.

    К 2-м фотодиодам прикреплены оптические фильтры, которые имеют отличия по толщине. Фильтры состоят из кремниевых зеркал, имеющих отражение от лицевой части поверхности, которые имеют слой оксида кремния. Поверхность напылена слоем алюминия малой толщины.

    Световой преобразователь подобен емкостному датчику. Его диафрагма смоделирована способом травления, которая покрыта металлическим тонким слоем. Стеклянная пластина снизу покрыта металлическим слоем. Между подложкой и стеклом есть промежуток, образованный двумя прокладками.

    Два металлических слоя образуют интерферометр с изменяемым воздушным промежутком. В его состав вошли: зеркало на стекле стационарного вида и меняющее положение зеркало на мембране.

    На подобной основе изготавливают чувствительные датчики размером 0,55 мм. Они легко проходят через ушко иглы.

    Оптическое волокно взаимосвязано с сенсором. В нем с помощью управления микропроцессора подключается монохроматический свет, который вводится в волокно. Делается замер интенсивности обратного света, по калибровке рассчитывается наружное давление и результат показывается на экране. Сенсоры используют в медицине для проверки давления внутри черепа, измерения кровяного давления в артериях легких. Другими методами в легкие добраться невозможно.

    Магнитные

    Магнитные датчики давления еще называют индуктивными. Элементом чувствительности служит Е-пластина, в центре расположена катушка, и проводящая мембрана. Она расположена на малом расстоянии от конца пластины. При подсоединении обмотки образуется магнитный поток, он идет через пластину, промежуток воздуха и мембрану.

    Магнитная проницаемость воздуха в зазоре в 1000 раз слабее мембраны и пластины. Малое изменение параметра зазора приводит к значительному изменению индуктивности.

    При воздействии давления мембрана изгибается, сопротивление катушки меняется. Преобразователь переводит изменение в сигнал тока. Измерительный рабочий элемент преобразователя сделан по схеме моста, обмотка включена в плечо. АЦП подает сигнал от элемента измерения в виде сигнала от давления.

    Емкостные

    Датчики давления самой простой конструкции, состоящий из плоских электродов (2 шт.) с зазором. Электрод сделан мембраной, на нее давит измеряемое давление. Меняется размер зазора. Такой вид датчика образует конденсатор с меняющимся зазором. Величина емкости конденсатора меняется при изменении промежутка от пластин или от электродов в данном случае.

    Для определения очень небольших изменений давления приборы наиболее применимы и эффективны. Они дают возможность произвести замеры избыточного давления в различной среде. На предприятиях при выполнении технологических процессов, в которых задействованы системы воздушного и гидравлического оборудования, в насосах, компрессорах, на станках емкостные датчики нашли широкое применение. Датчик емкостного вида имеет конструкцию, которая имеет стойкость к вибрациям, скачкам температуры, защищена от химической и электромагнитной среды.

    Ртутные

    Также простая конструкция прибора. Действует по закону о сообщающихся сосудах. На одну емкость давит давление, которое нужно измерить. По величине другого сосуда – определяется давление.

    Пьезоэлектрические

    Элементом чувствительности в этом датчике служит пьезоэлемент. Это вещество, создающее электрический сигнал во время деформации. Такое свойство называется прямым пьезоэффектом. В измеряемой области находится пьезоэлемент, который образует ток, прямо зависящий от значения давления. Сигнал в датчике из пьезоматериала образуется только при деформации. При неизменном давлении нет деформации, поэтому датчик годен только для проведения замеров среды с быстро изменяемым давлением.

    Если давление не будет изменяться, то не будет деформации, пьезоэлектрик не сгенерирует сигнал.

    Пьезоэлектрики нашли использование в первичных преобразователях потока водяных вихревых счетчиков, и других сред. Их устанавливают парами в трубу с проходом в несколько сотен мм за предметом обтекания. Фиксируют вихри. Количество и частота вихрей прямо зависят от скорости потока и расхода по объему.

    Пьезорезонансные датчики давления

    В отличие от вышеописанного вида датчика здесь применяется обратный пьезоэффект, то есть, форма материала пьезоэлемента изменяется от тока подачи. Применяется резонатор в виде пластины из пьезоматериала. На пластину с двух сторон нанесены электроды. На них подключается по очереди напряжение питания с разным знаком, пластина производит изгиб в обе стороны в зависимости от полярности поданного напряжения и частоты.

    Если воздействовать на пластину силой, чувствительной мембраной к давлению, то резонатор изменит частоту колебаний. Частота резонатора укажет значение давления на мембрану, которая оказывает давление на резонатор.

    На рисунке изображен пьезорезонансный датчик с абсолютным давлением, который сделан герметичной камерой 1. Она достигается корпусом 2, основанием 6, мембраной 10. Мембрана крепится на электронную сварку к корпусу. Держатели закреплены на основании перемычками. Силочувствительный резонатор удерживает держатель.

    Мембрана 10 давит на втулку 13 и шарик 6, который закреплен в держателе. Шарик давит на чувствительный резонатор 5. Проводка закреплена на основании 6, необходима для слияния резонаторов с генераторами. Сигнал на выходе абсолютного давления образуется по схеме путем разности генераторных частот. Датчик находится в активном термостате 18 с неизменной температурой 40 градусов. Давления для измерения поступает через штуцер 12.

    Резистивные датчики давления

    Другим названием этот датчик называется тензорезистор. Это элемент, который меняет собственное сопротивление при деформации. Такие тензорезисторы монтируют на мембрану, которая чувствительна к изменяющемуся давлению. В результате при приложении силы на мембрану происходит ее изгиб, из-за этого изгибаются тензорезисторы, которые на ней закреплены. На тензорезисторах меняется сопротивление и значение тока цепи.

    Растяжение элементов из проводников на каждом тензорезисторе ведет к увеличению длины и снижению сечения. В итоге сопротивление повышается. При сжатии процесс происходит наоборот. Изменения сопротивления незначительные, поэтому для обработки сигнала применяются усилители. Деформация переделывается в изменение сопротивления проводника или полупроводника, а затем в сигнал тока.

    Тензорезисторы выполнены в виде проводящего зигзагообразного элемента, или из полупроводника, который расположен на гибкой подложке, приклеенной к мембране. Подложка сделана из слюды, полимерной пленки или бумаги. Элемент проводника – из полупроводника, тонкой проволоки или фольги, напыленных на металл в вакуумном состоянии. Чувствительный элемент соединяют с цепью измерения выводами из проволоки или площадками контактов. Тензорезисторы чаще имеют размер площади до 10 мм 2 . Они более подходят для замера давления, веса, силы нажатия.

    Источники:

    http://www.maxplant.ru/article/pressure_sensor.php
    http://www.devicesearch.ru.com/article/datchiki-davleniy
    http://electricalschool.info/spravochnik/apparaty/1762-jelektricheskie-datchiki-davlenija.html
    http://kontech-system.com.ua/articles/datchiki-davlenija-tipy-harakteristiki-osobennosti-podbor/
    http://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/datchiki-davleniia/

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    Статьи c упоминанием слов: