35 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плавное включение ближнего света фар своими руками

Плавное включение и выключение ближнего света фар

В этой статье будет рассмотрена достаточно оригинальная идея по тюнингу, а именно реализация функции плавного включения и выключения ближнего света фар. Удобство этой доработки заключается в том, что схема управления светом размещается в корпусе стандартного реле включения ближнего света, и если что-то не устроит, все можно быстро вернуть обратно, просто установив стандартное реле.

Схема управления. Справа указаны номера контактов стандартного реле, к которым подключается эта схема, размещаемая внутри корпуса реле.

Для размещения схемы в корпусе реле необходимо использовать SMD детали, кроме транзистора. Схема, собранная на обычных деталях не будет столь компактной.

Корпус взят примерно от такого реле, его начинка была вынута, оставлена только алюминиевая планка на которой был закреплен электромагнит. Она будет использована для установки транзистора. Эта планка также будет являться радиатором транзистора. К ней прикручиваем еще одну пластину для улучшения отвода тепла от транзистора, так как он в процессе розжига и затухания ламп ближнего света ощутимо греется. Все места соприкосновения пластин необходимо промазать термопастой для более эффективного отвода тепла он нашего радиатора.

Далее изготавливается плата для монтажа деталей.

Вот так выглядит плата с размещенными на ней деталями. Плата припаяна к ножке реле.

На плате с обратной стороны размещен светодиод, он служит индикатором включения ближнего света.

Так выглядит наше устройство для плавного включения и выключения ближнего света фар, собранное в корпусе стандартного автомобильного реле.

Собираем корпус реле. Сверху можно наклеить этикетку, нарисованную в любом графическом редакторе на компьютере и распечатанную на принтере.

Устанавливаем это устройство в блок предохранителей вместо стандартного реле включения ближнего света, на его штатное место.

При установке данного устройства ближний свет автомобиля разгорается до полной мощности примерно за 2 секунды. При выключении ближнего света он горит ещё примерно секунд десять после нажатия на кнопку выключения, и затем плавно гаснет.

При работе ближнего света на автомобиле транзистор в нашем устройстве греется едва заметно, он слегка теплый. Интенсивный нагрев транзистора происходит только в моменты розжига и затухания ближнего света фар при его включении и выключении.

5 Самых Простых Схем плавного включения автомобильных фар

5 САМЫХ ПРОСТЫХ СХЕМ плавного запуска автомобильных ламп накаливания.

Рассмотрим по порядку пять самых популярных и простых схем плавного пуска их достоинства тонкости и недостатки.

1) Первая схема строится на электронном ключе – транзисторе или тиристоре, при включении постепенно , по мере заряда конденсатора через ограничивающий резистор, подает ток на лампочку накаливания.

Недостатком такой схемы является сложность в подборе нужного мощного транзистора (его дороговизна) и сильная зависимость от температуры. при низких температурах силовые ключи имеют свойство локально перегреваться и разрывать свой корпус.

Достоинство схемы в обеспечении наиболее комфортного и постепенного включения нагрузки.

2) Вторая схема исключает температурную зависимость , но обладает пороговыми свойствами и требует оптимального подбора ограничительного сопротивления ( не все резисторы способны работать при низких температурах с большими мощностями).

Схема строится на реле и запуск нагрузки происходит через ограничительное сопротивление. Как только разгоревшаяся лампочка обретает большое сопротивление нити накала, реле переключает контакты и подает на лампу весь потенциал минуя ограничительный резистор.

3) Третья схема строится на специальном резисторе – Термисторе с положительным коэффициентом сопротивления. Эта схема проста, но требует наличия или поиска такого Терморезистора, который способен выдерживать большие токи, имея минимальное сопротивление и не выходить из строй от холода.

Холодный старт резисторов с ПТКС очень часто выводит их из строя и такая схема , наряду с редкостью нужных деталей не рентабельна для самодельщиков.

4) Четвертая схема проста и лишена перечисленных выше недостатков. Малоомные сопротивления – это провода , а конденсатор сгодится практически любой. На холоде емкость большинства конденсаторов только нарастает, что улучшает характеристики схемы, а стойкость конденсаторов в цепях постоянного тока к низкой температуре прописана в технических паспортах.

При пуске сопротивление конденсатора практически равно нулю и основная энергия поглощается его емкостью, затем сопротивление конденсатора становится равным почти бесконечности и нисколько не мешает работе лампы накаливания. При этом в момент отключения питания, гашение происходит с плавным затуханием.

5) Пятая схема чуток не тривиальна, но работоспособна. Использование ламп с двойными спиралями разной мощности позволяет запускать лампочку в трёх режимах свечения, один из которых (при запуске спиралей последовательно) как раз и организует плавное включение.

Эта схема скорее для информации, но может для кого нибудь и пригодится.

Электронное реле с функцией плавного включения света фар

Каждый водитель знает, как порой утомляет желтизна обычных ламп накаливания в фарах автомобиля. Устанавливать ксеноновые лампы нежелательно, хотя они и имеют низкое потребление и большой срок службы. Из-за сильного ослепления водителей встречного транспортного потока возрастает вероятность аварийных ситуаций. Хорошее и не чрезмерно белое свечение дают галогенные лампы.

Их основной недостаток – повышенное энергопотребление и тепловыделение. Кроме того, как и все лампы на основе нити накаливания, они имеют срок службы вдвое меньше чем ксеноновые.

Физика процесса перегорания нити накаливания проста. Всякий проводник при нагревании увеличивает сопротивление проходящему току. Нить накаливания в рабочем режиме раскаляется и обеспечивает необходимую мощность свечения. При этом её сопротивление обеспечивает ток в цепи недостаточный для плавления металла нити. При включении, сопротивление холодной лампы в 12–13 раз меньше рабочего и соответственно во столько же раз больше электрический ток. Именно в этот момент чаще всего и происходит перегорание нити накаливания.

Идеально было бы плавно увеличивать напряжение вслед за разогревом и соответственно возрастанием сопротивления. Эта идея не нова – в бытовых светильниках давно применяются электронные устройства, обеспечивающие плавное включение и продлевающие срок эксплуатации ламп накаливания. Примеры схем подобных устройств можно найти в интернете в большом количестве. Применяя их для автомобиля, нужно учесть, что лучше использовать замену штатной сменной детали принципиально новой без необходимости переделки основной проводки.

Эта идея была осуществлена на автомобиле марки KIA Cerato LD выпуска 2008 г. с галогенными лампами Philips CrystalVision H4 простой заменой штатного реле управления ближним светом на доработанный аналог в соответствии с новыми требованиями.

Схема управления фарами с некоторым упрощением представлена на рисунке.

Читать еще:  Тюнинг нива бронто 4х4

Красным цветом выделено легкосъемное реле, которое и требует доработки. Удобно что через контакт «30» есть всегда питание +12 В, а через «86» и выключатель света или через «87» и холодные лампы, с практически нулевым сопротивлением, всегда есть соединение на массу.

Технические требования были выдвинуты следующие:

• потребление электронного реле при отключенном зажигании в пределах 5–7 мА, обеспечивающее небольшой ток утечки для защиты аккумулятора от разряда;
• при первом включении фар должен обеспечиваться плавный нагрев нитей ламп в течение 10–12 сек.;
• при отключении света менее чем на 0,5 сек. и последующем его включении, если зажигание не выключалось, задержка должна составлять 0,5 сек. с выходом на 80% мощности плюс 1 сек. для достижения 100% уровня свечения;
• при включенном двигателе 0,5 сек. поддерживается 50% мощность ближнего света после его отключения.

Последний пункт требует пояснения. В стеклянных колбах ламп модели H4 совмещены спирали ближнего и дальнего света. При этом схема проводки автомобиля выполнена так, что они могут включаться только попеременно. Вся конструкция после первого включения поддерживается в достаточно горячем состоянии и уже не требуется большая задержка на разогрев нитей. Это важно при кратковременном мигании дальним светом. После него ближний свет включится без задержки и не создаст неудобств дорожному движению в тёмное время суток.

Схема электронного реле

Реализация идеи нового реле представлена на схеме.

Здесь применена широтно-импульсная модуляция (ШИМ) в управлении ключевым элементом питания нагрузки. Роль электронного ключа должен выполнять элемент, обеспечивающий коммутацию постоянного напряжения 12 В с номинальным током нагрузки 12 А и кратковременным импульсным до 150 А. При этом необходимо малое падение мощности на нём в открытом состоянии и напряжение управления не более 5 В с малыми токами, работающими на слабо ёмкостную нагрузку.

Выбранный транзистор МОП с p-каналом IRF9310 отвечает этим требованиям и имеет следующие характеристики:

• напряжение сток-исток 30 В;
• ток сток-исток 20 А;
• пороговое напряжение затвор-исток 2,4 В;
• сопротивление открытого канала 6,8 мОм;
• входная ёмкость затвора 5250 пФ;
• максимальная рассеиваемая мощность 2,5 Вт.

На схеме это транзистор VT4. Резистор R12 обеспечивает его надёжное и быстрое запирание. Управление ШИМ обеспечивает микроконтроллер ATtiny13A с рабочей частотой 1,2 МГц. Потребляемый микросхемой ток не превышает 1 мА. Её максимальный выходной ток 40 мА обеспечивает надёжное срабатывание ключевого элемента VT4 и ограничивается резистором R11 в пределах 33–35 мА.

Питание -5 В для ATtiny13A обеспечивается линейным стабилизатором 79L05 рассчитанном на ток нагрузки 100 мА. Конденсатор C2 сглаживает пульсации тока в моменты срабатывания транзистора VT4. Его емкость допускается 1,0–2,2 мкФ. Этот элемент единственный, который потребляет много энергии во всей схеме – до 6 мА тока покоя.
Постоянное питание +12 В для всей схемы осуществляется только при включенном зажигании через VT1. Здесь применён полевой n-канальный транзистор IRLML0030. Можно использовать и другой рассчитанный на напряжение до 20 В при максимальном токе нагрузки 5 А. На массу исток транзистора подключается или через холодные лампы фар и диод VD3 или посредством включателя фар через VD4 и R6.

Сигналы управления микроконтроллера подаются на входы PB3 и PB4. Через VT2 информируется о выключении зажигания и необходимости выключения света фар. Через VT3 подаётся сигнал о включении фар.
Конденсатор C1 обеспечивает, после кратковременного отключения ближнего света, накал ламп на уровне 50% в течение 0,5 сек. Используется танталовый малогабаритный электролитический конденсатор, рассчитанный на напряжение 35 В. Можно использовать и меньшей ёмкости – до 10 мкФ.

Режимы работы схемы

Выключено зажигание и фары – закрыты транзисторы VT4 и VT1.

Зажигание включено. Открывается транзистор VT1 сигналом через резистор R1 и диод VD1. Через него заряжается конденсатор C1 по цепи резистора R4, диода VD3 и холодные лампы фар. Через резистор R2 и диод VD2 на транзистор VT2 подаётся напряжение для его открытия и на вход PB4 микроконтроллера подаётся сигнал о включении зажигания. Контроллер переходит в ожидание включения ближнего света фар.

Включаются фары ближнего света. Транзистор VT3 открывается сигналом через резистор R9 и микроконтроллер на входе PB3 получает сигнал о включении фар. Контроллер включает силовой транзистор VT4, зажигающий лампы. За счёт ШИМ обеспечивается их плавный нагрев, в течение 10–12 сек. Схема переходит на питание по цепи VD4 и R6.

Выключается ближний свет. Резистор R10 закрывает транзистор VT3, и микроконтроллер, получив сигнал на входе PB3, включает ШИМ в режим 50% нагрева ламп. Конденсатор C1, периодически подзаряжаясь через диод VD3 и фары в моменты переключения транзистора VT4, удерживает VT1 это время в открытом состоянии.

Выключается зажигание. Через резистор R5 транзистор VT2 запирается. Сигнал на входе PB4 заставляет микроконтроллер закрыть транзистор VT4 и перейти в ждущий режим. Резистор R3 обеспечивает закрытие транзистора VT1, который обесточивает конденсатор C1. Свет фар отключается.

Зажигание выключено при включенном переключателе ближнего света.
Транзисторы VT1 и VT4 в закрытом состоянии обеспечивают отключение фар. Утечка тока происходит только через R9, R10 в пределах 1,7 мА, что не влияет существенно на разряд аккумулятора.

Алгоритмы работы схемы

Медленный нагрев при первом включении

При этом происходит следующее:

• первые 3 сек. плавно нарастает свечение ламп до 30% за счёт работы ШИМ;
• уровень достигнутого накала 2 сек. поддерживается неизменяемым для прогрева ламп;
• в следующие 3 сек. плавно повышается до уровня 80% и фары дают удовлетворительный уровень освещения;
• за последние 4 сек. достигается 100% мощность

Удержание нагрева после выключения

При отключении фар в течение 0,5 сек. обеспечивается 50% питания ламп. Затем за 0,5 сек. нагрев плавно падает до нуля.

Быстрый нагрев

Этот режим возможен только при условии, что лампы находятся в состоянии 50% мощности накала – в удержании нагрева. При включении света плавно за 0,5 сек. достигается мощность 80% – достаточная для освещения дороги. А уже по истечении 1,5 сек. лампы горят в полную мощность.

В любом случае при уменьшении мощности накала менее 50% лампы гаснут. Последующее их включение происходит по циклу медленного нагрева. Если в процессе нагрева медленного или быстрого выключатель фар размыкается в момент, когда мощность на лампах превысила 50%, то начинается цикл удержания.

Читать еще:  Вторые стекла с тонировкой

Тепловой режим устройства

Транзистор IRF9310 в открытом состоянии имеет сопротивление всего 6,8 мОм. При токе 11 А, потребляемым фарами, рассеиваемая мощность не превышает 0,822 Вт. По спецификации транзистора для отвода тепла нужна медная пластинка площадью 6,5 см2. В малом объёме реле это сделать затруднительно и для охлаждения используется ножка реле, к которой припаивается как можно ближе сток транзистора. При этом обеспечивается приемлемый нагрев до 55–60 °C.

Программа контроллера ATtiny13

Конечный автомат, реализуемый программой, предусматривает 6 состояний:
1. ожидание включения фар при выключенном зажигании;
2. плавный нагрев;
3. ожидание очередного включения света;
4. быстрый нагрев;
5. полное включение ламп;
6. выключение с удержанием.

Выбор состояний определяется обработкой прерываний в момент переполнения таймера. Управление ШИМ реализовано таймером в режиме phase-correct PWM. Таймер и контроллер имеют рабочую частоту 1,2 МГц, а выходной сигнал ШИМ составляет 2353 Гц. Микроконтроллер при уменьшении питания ниже 2,7 В переходит в состояние сброса. Для этого в настройках задействована защита по напряжению Brown-out detector. Установлена задержка 0,064 сек. для возвращения автомата в исходное состояние после сброса.

Процесс изготовления реле

Фирма Kia применяет не унифицированное реле, и оно поставляется в магазины по заказу за немалые деньги.

Выходные лапки у него симметричны. Для катушки и рабочих контактов они расположены попарно по диагоналям. Поэтому нет разницы, какой стороной вставлять устройство в посадочные гнёзда. Для нового электронного реле важна полярность подключения, поэтому на корпусе необходимо сделать метки для правильной установки. Ошибочное положение приведёт к выходу из строя электронной части.

Штатное реле разбирать не нужно. Дело в том, что в этой машине есть шунт для опции ходовых огней в дневное время. По форме и подключению этот шунт-заглушка соответствует реле ближнего света.

Их меняют местами, а доработка этого шунта выполняется с меньшей затратой сил. Кроме того, он стоит недорого и на всякий случай может быть приобретён в магазинах.

Далее, выпиливают металлический шунт, оставляя лапки для крепления будущей платы.

Сама плата сделана из двухстороннего фольгированного стеклотекстолита с размерами, позволяющими установить её в новое реле. Для этих же целей применён двухсторонний монтаж с использованием малогабаритных радиоэлементов. Плата имеет размеры 19,70 Х 18,00 мм.

Вот её изображение с двух сторон.

Для изготовления применена Лазерно-Утюжная Технология (ЛУТ). Для шаблона использована глянцевая фотобумага, на которой печатается рисунок лазерным принтером. Разводка дорожек переносится на зачищенную мелкой наждачной бумагой обезжиренную поверхность текстолита посредством горячего утюга.

После травления, сверления и лужения плата имеет следующий вид.

При лужении нужно соблюдать осторожность, то бы не перегреть и не повредить дорожки. Лучше использовать минимальный нагрев паяльника и припой с низкой температурой плавления – ПОСВ 33, сплав Розе или Вуда.

На плату припаиваются радиоэлементы.

Затем она устанавливается в корпус реле.

Сверху на корпусе необходимо установить метку для правильной установки в автомобиль.

Для изготовления используются радиоэлементы:

• микроконтроллер AVR – ATtiny13A;
• стабилизатор 79L05 (MC79L05ACD);
• транзисторы VT1, VT2, VT3, VT4 – IRLML0030, 2N7002, IRLML5103, IRF9310 соответственно;
• диоды BAS321;
• конденсатор C1 – танталовый электролитический 10–22 мкФ на 35 В;
• конденсатор C2 – керамический 1,0–2,2 мкФ ;
• резисторы ОМЛТ 5% 0.125Вт.

Для реализации работы устройства по требуемому алгоритму необходимо перед установкой на плату запрограммировать микроконтроллер прошивкой. Программирование осуществляется любым программатором, который поддерживает микросхему ATtiny13A. Из промышленных подойдут, например, модели PICPROG, ChipProg+ или «Мастер».

Распечатку печатной платы удобно производить через программу Sprint-Layout. Схема разводки платы для этой программы представлена в этом файле.

Текст используемой программы контроллера находится по адресу. Его можно открыть программой Atmel Studio 6.0.

Идея плавного включения фар может быть применена на любом автомобиле. Нужно только скорректировать технические решения в соответствии с применяемой электроникой.

Плавное включение фар и габаритных огней автомобиля. Устройство для увеличения срока эксплуатации автомобильных ламп

Недавно один из наших форумчан, Rus_lan, выложил на форум интересную штуку — устройство для плавного включения фар автомобиля. Штука эта многих сразу же заинтересовала (и меня в том числе), поэтому тему было решено более подробно раскрыть и описать в отдельной статье.

Итак, если вы автолюбитель, то вам наверняка приходится менять в своём автомобиле различные лампы накаливания: дальний и ближний свет, габаритные огни, поворотники…

Поскольку наиболее активно в автомобиле используются лампы ближнего света и габаритных огней, то и менять их приходится чаще всего.

Хорошо известно, что перегорают лампы обычно в момент включения, причём зимой гораздо чаще, чем летом. Почему так происходит?

Дело в том, что рабочая температура нити лампы накаливания составляет более двух с половиной тысяч градусов цельсия. Именно при такой температуре нить и начинает светиться. До рабочей температуры нить нагревается протекающим по ней током. Если нагрев происходит слишком быстро и неравномерно, то температуры соседних участков нити не успевают выравниваться за счёт теплопроводности, между соседними участками создаётся большой перепад температур, расширяются эти участки сильно неравномерно, в результате чего в нити возникают большие механические нагрузки и она рвётся. Похожий эффект можно наблюдать, если плеснуть холодной водой на раскалённый камень. Внешние слои камня при этом резко охлаждаются и сжимаются, в то время, как внутренние ещё остаются горячими и расширенными. В результате, как мы знаем, камень трескается.

Кроме эффекта, описанного выше, механические нагрузки возникают также из-за магнитного взаимодействия витков спирали, сила которого опять же пропорциональна силе тока.

Хорошо, ну а при чём же здесь всё-таки момент включения? Всё очень просто. В момент включения, когда нить холодная, её сопротивление значительно ниже, чем сопротивление в нагретом состоянии, соответственно и протекающий в это время ток значительно больше рабочего тока. Следовательно, в момент включения мы имеем максимальную скорость нагрева нити, а также максимальное магнитное взаимодействие витков. Зимой начальная температура, а значит и начальное сопротивление нити, ниже, чем летом, следовательно начальный ток ещё больше.

Как с этим бороться? Давайте подумаем. Избавиться от неравномерного нагрева нити мы не можем, поскольку он возникает вследствии дефектов самой нити (например, если нить неравномерна по толщине, то более тонкие участки имеют большее сопротивление и нагреваются быстрее и сильнее). Однако, мы вполне можем уменьшить скорость нагрева и магнитное взаимодействие между витками спирали. Для этого нужно всего лишь ограничить протекающий через нашу лампочку ток, чтобы он, в то время, пока спираль нагревается, не превышал рабочего значения (или хотя бы превышал его незначительно). Именно такое устройство, позволяющее при включении плавно увеличивать ток через лампочку, и предложил Rus_lan.

Читать еще:  Электросхема фена для сушки волос

  1. C1 — конденсатор 47мкФ x 16В
  2. R1 — резистор 68кОм
  3. R2 — резистор 6,8кОм
  4. R3 — резистор 24кОм
  5. T1 — полевой транзистор FDB6670AL
  6. D1 — диод (любой)

Работает это устройство следующим образом: за счёт резисторов и конденсатора, установленного параллельно затвору полевика, напряжение на затворе транзистора растёт очень медленно, соответственно также медленно этот транзистор и открывается, что, в свою очередь, обеспечивает плавное увеличение напряжения на лампе и тока через неё. Делитель R1R3 задаёт максимальное напряжение на затворе. Резистор R2 дополнительно увеличивает время включения и защищает затвор транзистора, предотвращая любые возможности возникновения резких бросков тока через него.

Схема выложена в том варианте, в котором Rus_lan выложил её на форум, но лично я бы в ней кое-что изменил. Дело в том, что электролитические конденсаторы крайне плохо переносят низкие температуры (а у нас, например, зимой морозы -30 0 С и ниже совсем не редкость), поэтому я считаю, что лучше взять какой-нибудь керамический кондёр. Понятно, что найти керамику с такой ёмкостью нереально, но в таком случае можно взять конденсатор с ёмкостью поменьше, а уменьшение ёмкости скомпенсировать пропорциональным увеличением резисторов R1, R3.

Собранное устройство выглядит вот так:

А вот так оно выглядит в работе (в автомобильной фаре):

На этом всё, как говорится «ни гвоздя, ни жезла», удачи!

Как сделать плавное включение ближнего и дальнего света фар и для чего это нужно?

Часто водители спрашивают, как сделать плавное включение ближнего и дальнего света фар. Такое переключение не только придает автомобилю более интересный внешний вид, меньше воздействует на зрение, но и увеличивает срок службы галогеновых лампочек. Для создания такого эффекта необходимо добиться плавного затухания нити накала. Это является довольно распространенным видом тюнинга оптики. При этом, он не вызывает никаких проблем с работниками ГИБДД, что немаловажно в свете все более увеличивающихся штрафов. Итак, рассмотрим, каким образом достигается этот эффект, и нужно ли тратить на это свое время.

Содержание

Что дает?

Как сделать плавное включение ближнего и дальнего света фар и для чего это нужно. Основной функцией такой приблуды является защита лампочки от перегорания. Для большего понимания ситуации, рассмотрим ее с точки зрения физики. Все знают закон Ома, ну или догадываются о его существовании. Исходя из этого правила, следует, что сила тока всегда обратно пропорциональна сопротивлению. Формулу I=U/R, в школе видели, пожалуй, все. Нить накала автомобильной лампочки в холодном состоянии имеет сопротивление в 10-12 раз выше, чем разогретая. При подаче на нее напряжения и мощности сила тока соответственно также увеличивается в такое же количество раз. У стандартной лампы в 55 Вт, этот показатель может достигать 60 Ампер.

Правда, держится такая сила тока недолго, только до разогрева спирали, после чего происходит снижение силы тока до нормальных показателей. Лампочки рассчитаны на такое повышение, и по идее ничего страшного происходить не должно. Но, все знают способность ламп накаливания перегорать именно при включении. Все дело в неравномерности износа спирали. При эксплуатации некоторые участки по разным причинам испаряются быстрее, истончившаяся спираль становится более чувствительна к повышению силы тока и перегорает.

Плавное переключение света не дает с самого начала максимальную мощность, что не позволяет силе тока увеличиться до опасных пределов. Таким образом, удается значительно увеличить срок службы галогенок (см. статью “Что лучше ксенон или галоген”). Особенно это актуально для ламп «белого света», имеющих меньший ресурс.

Способы решения задачи

Для устранения проблемы достаточно снизить мощность, которая рассеивается при запуске. Для этого необходимо уменьшить силу тока в этой цепи. Существует несколько способов решения задачи:

  • Достаточно мощный полевой транзистор, имеющий конденсатор на затворе. Транзистор изначально пропускает малое количество тока. При этом, у него постепенно заряжается конденсатор, открывая затвор. При полностью заряженном конденсаторе мощность целиком проходит на лампу, что позволяет не использовать реле. Недостатком схемы можно считать необходимость отвода большого количества тепла;
  • Аналогично работает схема с NTS термистором и реле. В случае с автомобилем лучше использовать термистор на 2-5 Ом. Его подключают последовательно к лампе. При этом он рассеивает часть мощности. Постепенно нагреваясь, термистор снижает сопротивление. Мощность на лампочке растет, когда этот показатель достигнет определенного уровня реле, подключенное параллельно с лампой отключает термистор от цепи, обеспечивая лампе максимальное напряжение;
  • Широтно-импульсная модуляция. В отличие от описанных выше, при этом способе не ограничивается ток, что снижает рассеиваемую мощность. Это позволяет снизить необходимость в охлаждении. В схеме используется полевой транзистор. Через него напряжение подается на лампочку не постоянно, а с импульсами по несколько микросекунд. Благодаря этому, спираль нагревается равномерно. И происходит постепенное включение фар.

Вариант изготовления

Для начала вам понадобится старое реле или шунт-перемычка от вашего автомобиля. На него легко устанавливается любая плата. После чего подготавливается плата. Для этого вам понадобится создать принципиальную схему. Это делается в любой из доступных программ. В итоге на плате размещается микроконтроллер A Ttiny13A. Помимо этого, имеется пара диодов, которые обеспечивают минус. Также в схеме используется один полевой транзистор с максимальным сопротивлением 6,8 мОм.

Не забывайте, что он греется в процессе работы. Поэтому, его нужно размещать как можно ближе к ножке, которая будет выполнять функцию радиатора. Все детали небольшие по размеру, поэтому необходимо очень аккуратно обращаться с паяльником при пайке.

Заключение. Многие автолюбители увлекаются различным тюнингом световых приборов. В некоторых случаях это конструктивные изменения, позволяющие продлить срок службы ламп. К такому варианту относится способ, как сделать плавное включение ближнего и дальнего света фар. С помощью простой схемы, можно значительно продлить срок службы галогеновых ламп вашего автомобиля.

Источники:

http://tuning-lada-2109.ru/plavnoe-vklyuchenie-i-vyklyuchenie-blizhnego-sveta-far/
http://zen.yandex.ru/media/id/5c1ad3c0b93e1500aa2b13d7/5e0da3089515ee00aee2c6ee
http://xn—-7sbbil6bsrpx.xn--p1ai/%EF%BB%BFelektronnoe-rele-s-funkciej-plavnogo-vklyucheniya-sveta-far.html
http://radiohlam.ru/plavnie_fari/
http://autoflit.ru/2029-kak-sdelat-plavnoe-vklyuchenie-blizhnego-i-dalnego-sveta-far-i-dlya-chego-eto-nuzhno.html

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: